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Abstract

In this paper we obtain the maximum likelihood estimate of the parameters of discrete-time linear models by using a dual
time-frequency domain approach. We propose a formulation that considers a (reduced-rank) linear transformation of the
available data. Such a transformation may correspond to different options: selection of time-domain data, transformation
to the frequency domain, or selection of frequency-domain data obtained from time-domain samples. We use the proposed
approach to identify multivariate systems represented in state-space form by using the Expectation-Maximization algorithm.
We illustrate the benefits of the approach via numerical examples.
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1 Introduction

Identification of linear systems has been a topic of
recurrent interest in the areas of time series analysis
[24,26,8,35] and system identification [20,34,48]. Most
of the proposed algorithms available in the current
literature utilize data in the time domain. However,
interest in developing methods that utilize data in the
frequency domain has increased in the last decade (see
[34,41,36,3] and the references therein). An important
feature of frequency domain identification methods is
that the model can be fitted using the data in a re-
duced frequency range. This has been used as a tool to
robustify the algorithms to modelling errors and to fit
low-complexity models for at least four decades (see e.g.
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[27,16,41,36,56,17,3] and the references therein).

Estimation algorithms that are able to deal with missing
data have also been a topic of recurrent interest in the
areas of Statistics, Time Series Analysis, Finance and
Engineering (see e.g. [5,1,43,47,32,49,28,33,21,6]). There
has been renewed interest in developing identification al-
gorithms that consider missing measurements, for exam-
ple, in networked control systems subject to data packet
dropouts (see e.g. [44]).

In the current paper, we consider the problem of iden-
tifying a discrete-time linear model using frequency do-
main data in a reduced bandwidth, when we have miss-
ing data in the time domain. A similar problem has been
addressed before in [40]. However, in that work miss-
ing measurements were considered as extra parameters
to be estimated. Here, we consider the missing data as
random variables.

The notation to be used in the remainder of the paper
is defined below:

1.1 Notation

AT denotes the transpose of the matrix A, A† denotes
the pseudoinverse (in the sense of Penrose) of the ma-
trix A, tr {A} denotes the trace of A, det {A} denotes
the determinant of A, vec {A} denotes the operator
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that transforms a matrix into a vector by stacking its
columns , A ⊗ B denotes Kronecker product, 0a×b and
Ia denote the zero matrix of dimensions a × b and the
identity matrix of dimensions a × a respectively. For
the sake of conciseness, we will use the following col-
umn vector to represent a sub-sequence of the signal

xt, ~xk:l =
[
xTk xTk+1 . . . x

T
l

]T
. The particular case

~xk:k denotes the singleton xk. We use ~y(o) and ~y(m) to
denote the collection of observed and missing data over
the time interval 0 to N −1, respectively. β0 denotes the
true parameter, and β̂ denotes an estimate of β0. p~x(~α)
denotes the probability density function (pdf) of the
random vector ~x evaluated at ~α. Whenever it is clear
from the context, we will use p(~x) to denote the pdf of
the random vector ~x evaluated at ~x. p(~x|~y) denotes the
conditional pdf of ~x for a given ~y. E {·} denotes the ex-
pectation operator. E {x|y} denotes the expected value
of the random variable x given the random variable y.
A selection matrix is denoted as Sx ∈ Rn×m and con-
tains, only one non-zero element, i.e. 1, in each row.
Depending on the context z denotes either the forward
shift operator, zyt = yt+1, or the Z transform variable.

1.2 The problem of interest

Consider a discrete-time linear system of the form:

yt = Go(z)ut +Ho(z)ηt (1)

where, ut ∈ Rnu , yt ∈ Rny are the input, and measured
output signal respectively. The random processes ηt ∈
Rnη is a discrete-time zero mean Gaussian white noise
sequence with covariance matrix P .

We assume that the input, ut, is a known deterministic
signal and that some output measurements are missing.
We define the following (stochastic) signal, which defines
the instants where the data is missing:

st =
{

1 if yt is measured,
0 if yt is missing.

(2)

The observed and missing data are denoted by ~y(o), and
~y(m) respectively.

We combine the parameters to be estimated in a vector
denoted by β. This vector of parameters includes the
parameters that define models for Go(z) and Ho(z), the
statistical properties of the system initial condition, and
the noise covariance matrix P . We assume that there
exists a true value, βo, for the parameter vector.

In order to translate the data to the frequency domain,
we use the Discrete Fourier Transform (DFT) given by:

Yk =
1√
N

N−1∑
t=0

yte
−j 2π

N kt ; k = 0, . . . , N − 1

We use capital letters, e.g. Yk, to represent the Fourier
transform of the signal yt. We utilize the following real
transformation to represent the frequency domain data
(see e.g. [3] for details):

~Y R0:N−1 = MR~y0:N−1 (3)

where

~Y R0:N−1 =


If N is even:
[Y T0 ,

√
2<{Y T1 },

√
2={Y T1 },...,Y

T
K ]T

If N is odd:
[Y T0 ,

√
2<{Y T1 },

√
2={Y T1 },...,

√
2<{Y TK },

√
2={Y TK }]

T

where <{·} and ={·} represent “the real and imaginary
part of” respectively. Note that MR in (3) is a square,
full-rank, real, unitary matrix, and K = bN/2c is the
largest integer less than or equal to N/2.

We are interested in developing a Maximum-Likelihood-
based algorithm to estimate βo using the available data.
The available data considers the effect of missing data
in the time domain, and the use of frequency domain
data in a reduced frequency range (i.e. by selecting some
components of ~Y R0:N−1).

The layout of the remainder of the paper is as follows. In
Section 2 we discuss relevant issues regarding ML esti-
mation in both time and frequency domains. In Section
3, a dual time-frequency domain algorithm is presented
which allows one to deal with incomplete data. In Sec-
tion 4, an EM-based algorithm is developed in order to
identify dynamic systems using a dual time-frequency
domain approach. In Section 5, we present numerical ex-
amples. Finally, in Section 6, we draw conclusions.

2 Maximum Likelihood estimation in time and
frequency domains

2.1 Maximum Likelihood estimation in the time domain

The problem of Maximum Likelihood (ML) estimation
in the time domain is well documented and appears in
many textbooks (see e.g. [20,48,34]). Indeed, for the sys-
tem described in (1), the ML estimate obtained from
the data ~y0:N−1 is given by the solution of the following
optimisation problem:

β̂ = arg min
β
l(β)

where the negative-log-likelihood function, l(β), is given
by, save for some constants, (see e.g. [10, page 140]):

l(β) =
N−1∑
t=0

(yt − ŷt|t−1)TΣ−1
t|t−1(yt − ŷt|t−1)

+ log det
{

Σt|t−1

}
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where

ŷt|t−1(β) = E {yt|~y0:t−1, β} (4)

Σt|t−1(β) = E
{

(yt − ŷt|t−1)(yt − ŷt|t−1)T |~y0:t−1, β
}
(5)

and where y0 is assumed to be normally distributed with
mean ŷ0|−1(β) and variance Σ0|−1(β). The quantities in
(4) and (5) can be obtained by representing the linear
system in state-space form and using Kalman filtering
techniques 1 . In order to reduce the computational load
associated with the calculation of the gradient and Hes-
sian of l(β), iterative algorithms have also been devel-
oped, (see e.g. [9,22,46] and [10, chapter 4]).

We next present a result that shows the effect of em-
ploying a linear transformation of the data on the ML
estimate.

Lemma 1 The ML estimate for a vector of parameters
β0 obtained from the data ~y0:N−1 is invariant under any
bijective linear transformation of the data, g = L~y0:N−1,
where L ∈ Rm×Nny , i.e.

β̂ = arg max
β

p(~y0:N−1|β) = arg max
β

pg(L~y0:N−1|β)(6)

On the other hand, the ML estimate obtained from the
data L~y0:N−1 when rank {L} = l ≤ min{m,Nny} is
given by:

β̂ = arg max
β

pgr (V
T
1 ~y0:N−1|β) (7)

where gr = V T1 ~y0:N−1 and the singular value decomposi-
tion of L is given by:

L = U

[
S 0l×(Nny−l)

0(m−l)×l 0(m−l)×(Nny−l)

][
V T1

V T2

]
(8)

U ∈ Rm×m and V =
[
V1 V2

]
are unitary matrices where

V1 ∈ RNny×l and V2 ∈ RNny×(Nny−l) and S is a diago-
nal matrix with elements given by the non-zero singular
values of L, i.e. S = diag{σ1(L), σ2(L), . . . , σl(L)}.

PROOF. We analyse two cases:

(i) L is a square invertible matrix: (6) is immedi-
ately obtained by using the theorem of transformation of
random variables (see e.g. [23, page 21]).

(ii) rank {L} = l ≤ min{m,Nny}: considering that
(8) is the singular value decomposition of the matrix L

1 Note that the expressions for ŷt|t−1(β) and Σt|t−1(β) are
simpler when the model for Ho(z) is invertible, stable and
minimum phase.

(see e.g. [45]), and using the theorem of transformation
of random variables we have that the ML estimate ob-
tained from the data L~y0:N−1 is the same as the ML esti-

mate obtained from the data
[
(SV T1 ~y)T 0T(m−l)×Nny

]T
.

The pdf of this latter vector is singular, and the ML esti-
mate is given by the maximisation of the envelope of the
singular pdf. Finally, considering that S is an invertible
matrix, and using the theorem of transformation of ran-
dom variables, we obtain the result in (7). 222

2.2 ML estimation in the frequency domain

The ML estimate in the frequency domain is obtained
by solving the following optimisation problem:

β̂ = arg max
β

p(~Y R0:N−1|β)

Notice that ~Y R0:N−1 contains all the information in the
data since there exists a bijective linear transformation
from ~y0:N−1 to ~Y R0:N−1. Using Lemma 1, we have that
the ML estimates obtained in time and frequency do-
mains are equivalent even for finite data length (see [3]
for a discussion comparing the estimates obtained by
the “usual” ML in the frequency domain with those ob-
tained in the time domain).

In order to fit models using the frequency domain data
in a reduced frequency range, the following likelihood is
typically used:

β̂ = arg max
β

p(g|β) (9)

g = SF ~Y
R
0:N−1 (10)

and SF is a (deterministic) full row rank frequency do-
main selection matrix.

3 ML estimation with incomplete data in time
and frequency domain

In practice, it is common that only a coarse version of
the data is available for estimation purposes. This could
be due to a failure in the measurement device, quantisa-
tion of the measurements, or due to the fact that outliers
have been discarded. As a consequence, a considerable
amount of research on estimation with incomplete data
has been developed in the last four decades. The main
focus in this area has been on missing data in the time
domain (see e.g. [13,33,29]). To the best of our knowl-
edge, [40] is the only reference that deals with data in
the frequency domain.

The estimation algorithm in (9)-(10) is a particular case
of Maximum Likelihood for data grouping [29]. The con-
cept of data grouping makes reference to two sample
spaces C and G and a many-to-one mapping from C
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to G . The data used for estimation, g, is a realisation
from G . The corresponding data C in C is not directly
used for estimation, but is used to define the likelihood
function of interest. It is assumed that there is a (deter-
ministic) coarsening mapping C → g(C) from C to G .
In this framework, C is called the complete data. The
corresponding likelihood function is given by [29]:

LG(β) = p(g|β) =
∫
C(g)

p(C|β)dC (11)

where C(g) is the set given by all the values of C that
are consistent with the given data g, i.e.

C(g) = {C ∈ C |g = g(C)}

For the case of maximum likelihood using a reduced fre-
quency range, the complete data is given by C = Y R0:N−1

and the many-to-one mapping by g = SF ~Y
R
0:N−1.

On the other hand, in most estimation problems the
coarsening mapping from C to G is, in general, a stochas-
tic process. In this case, the likelihood of interest is given
by [29]:

LC(β, ψ) =
∫
C(g)

p(C|β)p(g|C,ψ)dC (12)

where the vector ψ is used to parameterise the stochastic
law for g given C. In particular, when the coarsening
data mechanism is due to missing data, we have that the
complete data is given by C = ~y0:N−1, and the data used
for estimation is given by g = ~y(o) = ST~y0:N−1 where
ST is the selection matrix that defines the observed data
~y(o). In this case, we have that the probability of ~y(o)

given ~y0:N−1 depends on the stochastic law for st in (2).

It is well known that the estimates provided by (11) and
(12) are, in general, different [29]. In addition, it is more
difficult to develop an algorithm to optimise (12) than
to develop an algorithm to optimise (11). A special case
is when both approaches provide the same estimates.
This situation occurs if the stochastic law of the coars-
ening data mechanism satisfies an assumption, known as
Coarsening At Random (CAR). A missing data mecha-
nism is CAR if, for the fixed observed value of g and for
each value of ψ, p(g|C,ψ) takes the same value for all
C ∈ C(g).

A particular case when the coarsening data mecha-
nism is CAR is when the coarsening is due to miss-
ing data in the time domain and ~s0:N−1 satisfies
p(~s0:N−1|~y(o), ~y(m), ψ) = p(~s0:N−1|ψ). This latter con-
dition is known in the literature as missing completely
at random [43]. For example, if the data generating
mechanism (~y0:N−1) is independent of the missing data
mechanism (~s0:N−1), and ~s0:N−1 is obtained by the

following Markov model:

p(st = 0|st−1 = 0) = 1− p(st = 1|st−1 = 0) = ς(13)
p(st = 1|st−1 = 1) = 1− p(st = 0|st−1 = 1) = δ(14)

where 0 ≤ ς ≤ 1, 0 ≤ δ ≤ 1 and the vector of parameters

ψ is given by ψ =
(
ς δ
)T

, then the coarsening data
mechanism is CAR.

Within the scope of the current paper it suffices to un-
derstand that, under the assumption that the coarsening
data mechanism is CAR, the maximum likelihood esti-
mate is given by the solution of the optimisation prob-
lem in (11). We refer the reader to existing literature re-
garding the theory of estimation with coarse and missing
data for further details (see e.g. [43,29,33]).

3.1 Incomplete data in time and frequency domain

For the problem of interest in this paper, the coarsen-
ing data mechanism is due to both missing data in time
domain, and the choice of using the frequency domain
data in a reduced frequency range. Since the selection
of the reduced frequency range is deterministic (deter-
mined by the user and not based on the data) the only
randomness in the coarsening procedure is due to the
missing data mechanism in the time domain.

Obtaining models that fit the data over some specific
frequency bandwidth is often motivated as a mechanism
to obtain robust estimates and also because, in general,
one is interested in obtaining a low-complexity model
(see e.g. [17]). This can be treated by using a selection of
the data in the frequency domain. This can be expressed
as follows:

~y(r) = SF ~Y
R
0:N−1 (15)

where SF ∈ Rm×Nny is a selection matrix. This selection
matrix can be constructed in a similar fashion to the
selection matrix ST for missing data in the time domain.
Combining equations (3) and (15) we have that the data
to be used in our identification procedure is given by:

~y(r) = SF ~Y
R
0:N−1 = SFMR~y0:N−1 (16)

Similarly, we can also build a matrixS⊥F ∈ R(Nny−m)×Nny

that selects the data in the frequency outside the range
of interest.

~y(nr) = S⊥F
~Y R0:N−1 = S⊥FMR~y0:N−1 (17)

Combining (16) and (17) we have that:[
y(r)

y(nr)

]
=

[
SF

S⊥F

]
MR~y0:N−1
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where SF and S⊥F are selection matrices. Similarly, the
observed and missing data in time domain satisfy the
following: [

y(o)

y(m)

]
=

[
ST

S⊥T

]
~y0:N−1

where the matricesST ∈ Rp×Nny andS⊥T ∈ R(Nny−p)×Nny

are selection matrices. Combining both equations we
have that:[

~y(r)

~y(nr)

]
=

[
SF

S⊥F

]
MR

[
ST

S⊥T

]−1 [
~y(o)

~y(m)

]

Considering that
[
STT (S⊥T )T

]T
is a permutation matrix,

we have that [45, page 330]

[
ST

S⊥T

]−1

=
[
(ST )T (S⊥T )T

]
.

Thus, we have that the data in the frequency range
of interest can be described by ~y(r) = SFMRS

T
T ~y

(o) +
SFMR(S⊥T )T~y(m). Notice that only part of the data of
interest is available, i.e. the data that, in this case, can
be used for inference is given by ~y(x) = SFMRS

T
T ~y

(o).
Since the rank of the matrix SFMRS

T
T ∈ Rm×p is less or

equal to min{m, p,Nny}, we have that this matrix will
not be, in general, full row rank. Then, using Lemma
1 (with L = SFMRS

T
T ) we have that the data to be

used for estimation can be defined as g = V T1 ~y
(o), where

V1 is obtained from a singular value decomposition of
SFMRS

T
T .

In order to calculate the likelihood function we
use the relationship between ~y(o) and ~y0:N−1, i.e.
g = V T1 ST~y0:N−1 and consider that V T1 ST is a full-
row rank matrix (see [45, page 38]). Notice that, if the
coarsening data mechanism is CAR, then the likelihood
function of interest is then given by (11) and the set
C(g) is given by:

C(g) = {C ∈ C |g = V T1 ~y
(o) = V T1 ST~y0:N−1}

Notice that, since ST is full row rank, it is sufficient to
consider g = STT ~y

(o) and there is no need to obtain its
singular value decomposition.

The complete data C and the set C might contain the
output ~y0:N−1, but will, more generally, be defined de-
pending on the estimation problem of interest.

In the case that the coarsening data mechanism is given
by missing data in the time domain, the set C(g) is given
by:

C(g) = {C ∈ C |V T1 ~y(o) = V T1 ST~y0:N−1}
= {C ∈ C |g = ~y(o) = ST~y0:N−1}

since V T1 is a full row rank matrix (or ST a full row rank
selection matrix). The set C can be defined, for example,
by the union of missing and observed data. This agrees
with the analysis typically used for missing data in the
time domain.

Remark 2 Note that the random variable ~y(x) = STT ~y
(o)

is the same as would be obtained by replacing the missing
data with zero entries in the vector ~y0:N−1. The likeli-
hood function is, however, calculated by using the random
variable ~y(x) = STT ST~y0:N−1 which has a singular distri-
bution. This likelihood function is, in general, different to
the one obtained from the random variable ~y0:N−1 evalu-
ated at the observed data with the missing data replaced
by zero. OOO

On the other hand, if the coarsening data mechanism is
due to a selection of frequency domain data, then the
set C(g) is given by:

C(g) = {C ∈ C |g = SFY
R
0:N−1 = SFMR~y0:N−1}

which agrees with the analysis typically used for maxi-
mum likelihood in the frequency domain.

3.2 The Expectation-Maximization algorithm

The Expectation-Maximisation (EM) algorithm is one
of the main tools used to identify dynamic systems in
the presence of missing data in the time domain (see e.g.
[47,49,30,18,21]).

In the EM algorithm there is an underlying assumption
that the missing data mechanism is somehow “indepen-
dent” of the coarsening process [13]. The usual assump-
tion for missing data in the time domain is that, in the
missing data mechanism, ~s0:N−1 depends only on ~y(o)

and not on ~y(m).

The EM algorithm finds the estimate for a vector of
parameters βo by maximising the likelihood function
given in (11). This means that the EM algorithm can be
utilised for general problems with incomplete data.

The EM algorithm may be summarised as follows [13]:

(1) Choose an initial estimate β̂0 ∈ Π, where Π is a
constraint set in the parameter space. i = 0.

(2) Compute the auxiliary function Q(β, β̂i) which
is the expected value of the complete data log-
likelihood given the observed data g and the esti-
mate β̂i, i.e. Q(β, β̂i) = E

{
log[p(C|β)] |g, β̂i

}
.

(3) Set β̂i+1 = arg max
β∈Π

Q(β, β̂i).

(4) i = i+1. Go to step 2, and repeat until convergence.

Steps 2 and 3 are usually known as the E-step and
M-step, respectively. Under quite general conditions
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[13,55,50], the EM algorithm can be proven to converge
to a stationary point of the likelihood function. In many
practical applications this will be a local maximum of
the likelihood function [38].

4 Dual time-frequency identification of linear
state-space models via the EM algorithm

Identification of multivariate systems has received con-
siderable attention in the last four decades in the area
of time series analysis [24,42,35,8] and system identifi-
cation [20,48,34].

Multivariate systems can be identified by using differ-
ent estimation methods such as Maximum Likelihood
(ML), the Prediction Error Method (PEM), and Sub-
space identification methods. All of these methods can
be formulated in both time- and frequency- domains (see
e.g. [20,34,12,51,41,7,2]).

Systems represented in state-space form are used in
many areas including automatic control [19] and econo-
metrics [25]. State-space models provide a concise and
flexible representation of a multivariate system [14]. We
use the following state-space formulation:

xt+1 = Axt +But + wt (18)
yt = Cxt +Dut + vt (19)

where xt ∈ Rn, ut ∈ Rnu , yt ∈ Rny are the state, the in-
put, and measured output signal respectively. The ran-

dom processes ηt =
[
wTt vTt

]T
is a discrete-time zero

mean Gaussian white noise sequence with covariance
matrix given by:

E
{
η` ηk

T
}

= PδK [`− k], P =

[
Q S

ST R

]
(20)

where δK [`] is the Kronecker delta function, and x0 is
a Gaussian random variable with mean µ0 and covari-
ance matrix P0 i.e. x0 ∼ N(µ0, P0). Furthermore, we as-
sume that x0, and ηt are jointly independent and that
the system is operating in open loop, i.e. the input sig-
nal ut and the noise sequence ηt are jointly independent.
Note that when the “real” system does not satisfy the
assumptions made to find the maximum likelihood es-
timate, the resultant estimates correspond to estimates
based on Quasi-maximum likelihood [53]. In fact, the
analysis when the noise ηt is non Gaussian distributed
is well known (see [26] for further details).

We are interested in obtaining ML estimates of the state-
space matrices {A,B,C,D} in (18), (19), of P in (20),
and µ0 and P0, given the measurements of the input
and output data sets {ut} and {yt} of length N , i.e.,
t = 0, . . . , N −1. Note that, the system is not parameter
identifiable since a linear transformation of the states

will define an equivalent state-space representation for
the system. On the other hand, the main difficulty in
identifying a system expressed in state-space form is
that the likelihood function is, in general, non-convex.
Thus, the success of the optimisation procedure utilised
to maximise the likelihood function strongly depends
on which parameterisation is used. In [37] it is sug-
gested that one should use over-parameterised state-
space models in order to overcome the numerical is-
sues that arise when using canonical parameterisations.
These over-parameterised models have also been suc-
cessfully used in the context of EM-based algorithms
(see e.g. [47,39,18,15,2]). In this paper we also use an
over-parameterised state-space model. The extension to
non-over-parameterised state-space model is straightfor-
ward.

ML estimation in the presence of time domain miss-
ing data has previously been addressed by using the
Expectation-Maximization (EM) algorithm (see e.g.
[30,21]).

4.1 Calculation of the intermediate function Q(β, β̂i)

We first calculate the pdf of the complete data given by
C = {~x0:N−1, ~y0:N−1}:

Lemma 3 The joint pdf of ~x0:N and ~y0:N−1 is given by

p(~x0:N , ~y0:N−1) = N(µ,Σ) (21)

where N(µ,Σ) denotes the pdf of a normal distribution
with mean µ and covariance matrix Σ where:

µ = Γµ0 + Λ~u0:N−1

Σ = ΓP0ΓT + ΩP[IN ⊗ P ]PTΩT

where P ∈ RN(n+ny)×N(n+ny) is a permutation
matrix that transforms ~η0:N−1 into the stacking
of ~w0:N−1 and ~v0:N−1, and Γ ∈ R(n+N(ny+n))×n,
Λ ∈ R(n+N(ny+n))×Nnu and Ω ∈ R(n+N(ny+n))×N(n+ny)

are given by:

Γ =



In
A

A2

...
AN

C
CA

...
CAN−1


(22)
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Λ =



0n×Nnu
B 0 · · · · · · 0
AB B 0 · · · 0

A2B AB B 0
...

...
...

. . . . . .
...

AN−1B AN−2B · · · AB B
D 0 · · · 0 0

CB D 0
...

...

CAB CB D 0
...

...
...

. . . . . .
...

CAN−2B CAN−3B · · · CB D



Ω =



0n×Nn
In · · · · · · · · · 0
A In 0 · · · · · ·
...

. . . . . . . . .
... 0(Nn+n)×Nny

AN−1 · · · · · · A In
0ny×Nn

C 0 · · · · · · 0
CA C 0 · · · 0
CA2 CA C · · · 0 INny

...
...

...
...

...
CAN−2 · · · · · · C 0


(23)

Moreover, the logarithm of the joint pdf of ~x0:N and
~y0:N−1 is given by:

lc(β) = log p(~x0:N , ~y0:N−1)

= −1
2

log det {P0} −
N

2
log det {P}

− 1
2

(x0 − µ0)TP−1
0 (x0 − µ0)

− 1
2

N−1∑
t=0

(ζt −Θξt)
T
P−1 (ζt −Θξt)

− [N(n+ ny) + n] log 2π (24)

where

Θ =

[
A B

C D

]
, ζt =

[
xt+1

yt

]
, ξt =

[
xt

ut

]

PROOF. Using (1) and (19), we have that

[
~x0:N

~y0:N−1

]
= Γx0 + Λ~u0:N−1 + Ω

[
w0:N−1

v0:N−1

]

where Γ, Λ and Ω are given in (22)-(23). Then, using a
permutation matrix P we have that:[

w0:N−1

v0:N−1

]
= P~η0:N−1

Finally, on noting that ηt is an i.i.d. Gaussian white noise
sequence, the result in (21) follows.

On the other hand, using Bayes’ rule, we have that the
joint pdf of ~x0:N−1 and ~y0:N is given by:

p(~x0:N−1, ~y0:N ) = p(x0)
N−1∏
t=0

p(xt+1, yt|xt) (25)

Considering that ζt given ξt is Gaussian with mean Θξt
and variance P , that x0 ∼ N(µ0, P0), and applying the
logarithm to both sides of (25), we obtain (24). 222

Lemma 4 For the dynamic system represented in state-
space form in (18)-(19), and considering the complete

data is given by C =
[
~xT0:N−1 ~y

T
0:N−1

]T
, the intermedi-

ate function Q(β, βi) in the EM algorithm for the ML
problem in (11) with incomplete data g (a function of the
data ~y0:N−1) is given by:

Q(β,βi) = E {log [p(~x0:N , ~y0:N−1|β)] |g, βi}

=− 1
2

log det {P0} −
N

2
log det {P}

− 1
2

tr
{
P−1

0 [(x̂0|g − µ0)(x̂0|g − µ0)T + Σ0|g]
}

− 1
2

tr
{
P−1[Ξ−ΨΘT −ΘΨT + Θ∆ΘT ]

}
− [N(n+ ny) + n] log 2π

where

Ξ =
N−1∑
t=0

Σζt , Ψ =
N−1∑
t=0

Σζtξt , ∆ =
N−1∑
t=0

Σξt

and

x̂0|g = E {x0|g, βi} (26)

ζ̂t = E {ζt|g, βi}
ξ̂t = E {ξt|g, βi}
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Σ0|g = E
{

(x0 − x̂0|g)(x0 − x̂0|g)T |g, βi
}

Σζt = E
{

(ζt − ζ̂t)(ζt − ζ̂t)T |g, βi
}

Σζtξt = E
{

(ζt − ζ̂t)(ξt − ξ̂t)T |g, βi
}

Σξt = E
{

(ξt − ξ̂t)(ξt − ξ̂t)T |g, βi
}

(27)

PROOF. The result is directly obtained by using
Lemma 3, and Corollary 17. 222

Remark 5 Notice that the result in Lemma 4 is valid
for any estimation problem for the system (18)-(19) us-
ing incomplete data (provided the coarsening data mech-
anism is CAR). However, it is necessary to calculate the
quantities in (26) to (27) for the specific problem of in-
terest. OOO

Remark 6 If g = L~y0:N−1 where L ∈ Rm×Ny is a de-
terministic matrix then the quantities from (26) to (27)
can be calculated using Lemma 16 with T =

[
0 L
]

and

~z =

[
~x0:N

~y0:N−1

]
OOO

We next give the details of the M-step in the EM algo-
rithm.

Proposition 7 The stationary points of Q(β, βi) (with
variables Θ and P−1) are given by

Θ = Ψ∆−1

P−1 =
[
Ξ−Ψ∆−1Ψ

]−1

PROOF. Directly by using Lemma 14. OOO

Remark 8 Note that a Cholesky factorisation can be
used to calculate P in a numerically robust fashion. This
has been previously used in [15] for the time-domain EM
algorithm. OOO

Remark 9 If the parameters are required to satisfy lin-
ear constraints, then it is possible to obtain an optimi-
sation algorithm that freezes some parameters and op-
timises the non-frozen ones. This approach will lead to
a generalised EM algorithm. See [4] for further details.
OOO

4.2 Direct maximisation of the likelihood function

An important property of the EM algorithm is that the
first and second order derivatives of the log-likelihood
function can be obtained by taking derivatives of the
intermediate function Q(β, βi) and the joint pdf of
~x0:N−1, ~y0:N−1. The following lemma formally states
how these derivatives can be obtained:

Lemma 10 The first and second order derivatives of the
log-likelihood function l(β) are given by the Fisher and
Louis identities:

∂l(β)
∂β

∣∣∣∣
βi

=
∂Q(β, βi)

∂β

∣∣∣∣
βi

∂2l(β)
∂β∂βT

∣∣∣∣
βi

= M − vvT =: Hi

where

M =
∂2Q(β, βi)
∂β∂βT

∣∣∣∣
βi

+ E
{
zzT |~g, βi

}
v =

∂Q(β, βi)
∂β

∣∣∣∣
βi

z =
∂ log p(~x0:N , ~y0:N−1|β)

∂β

∣∣∣∣
βi

PROOF. See e.g. [10, page 354]. 222

Remark 11 Notice that E
{
zzT |~g, βi

}
can be efficiently

obtained by using Lemmas 14, 16 and 18. OOO

Remark 12 Notice that, using Lemma 10, it is possi-
ble to develop a Newton-like algorithm. The inverse of
the Hessian of the log-likelihood function might be calcu-
lated by using the Matrix Inversion Lemma (see e.g. [45,
Chapter 15]). OOO

In [52] it was pointed out that the EM-based estimation
algorithm typically behaves better than Newton-based
algorithms when the initial estimates for the parameters
are far from the true value. However, the EM algorithm
slows down when the parameter estimate is close to the
value that maximises the likelihood function. Thus, in
[52] it is advocated that an algorithm that combines both
approaches should be utilised. In addition, notice that
the quantities used in the EM algorithm can be directly
used in the implementation of a Newton-like algorithm
(see Remark 12).

5 Numerical examples

5.1 Example: Comparison with other methods

In this numerical example, we compare the performance
of the proposed algorithm with two previous approaches:
(i) the method in [40] that develops an ML estimate
for the parameters of a linear system in transfer func-
tion representation. The algorithm uses the traditional
frequency domain identification approach and considers
missing data as extra parameters to be estimated; and
(ii) the methods in [2,54] where an EM algorithm for
systems represented in state space form is used. These
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approaches utilise data in the frequency domain, and do
not cover the case of missing data in the time domain.

We compare our algorithm with a combination of the
two approaches above, i.e., we use the algorithm in [40]
for a system represented in state space form as in [2,54].
We call this method the “current approach”.

We consider the system given in (18)-(20), with

A =

[
1 −0.8

1 0

]
, B =

[
1

0

]
, C =

[
1 0.6

]
, D = 0 (28)

Q = 0.01I2, S = [0 0]T and R = 0.01, and the input
signal is zero mean Gaussian white noise with variance
σ2
u = 4.

The transfer function representation for the system of
interest is given by:

Yk = Go(zk)Uk +Ho(zk)Wk + Vk + To(zk)

where

Go(zk) = C(zkI −A)−1B +D (29)
Ho(zk) = C(zkI −A)−1

To(zk) = C(zkI −A)−1α

where zk = ejωk , ωk = 2π
N k, and α = x0 − xN . We

consider α as an extra parameter to be estimated (see
[11,2,54,3]).

We use N = 1024 data points for each one of 100 Monte-
Carlo simulations.

Three cases are analysed: (i) when all data is available
for the estimation, (ii) when 20 consecutive samples of
the output data are missing, (iii) when 200 consecutive
missing samples of the output data are missing.

Figures 1(a)-1(c) show the mean and one standard de-
viation band (over all the Monte-Carlo simulations) of
the magnitude of the relative error given by:

Ri(ejωk) := |(G0(ejωk)− Ĝi(ejωk))/G0(ejωk))| (30)

where G0 is described in (28)-(29), and Gi is the corre-
sponding transfer function Ĝi = Ĉi(zI − Âi)−1B̂i + D̂i

corresponding to the estimated model in the ith Monte-
Carlo simulation. The magnitude of the relative error
is computed for each ωk belonging to a finite set in the
range (0, π).

Figure 1(a) shows the magnitude of the relative error
when all the data is available for estimation (no miss-
ing data). We observe that the proposed approach pro-
vides similar results to the combination of the previous
approaches available in the literature.

10
−2

10
−1

10
0

0

0.02

0.04

0.06

0.08

0.1

0.12

Frequency [rad/s]

 

 

 Current approach
 Proposed approach

(a) No missing samples in time domain.
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0

0
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0.1

0.12
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 Current approach
 Proposed approach

(b) 20 missing samples in time domain.

10
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10
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10
0

0

0.02

0.04

0.06

0.08

0.1

0.12

Frequency [rad/s]

 

 

Current approach
Proposed approach

(c) 200 missing samples in time domain.

Fig. 1. Relative error magnitude |(G0− Ĝi)/G0| for both ap-
proaches. Estimating the missing data as extra parameters
(red-dashed line) and as hidden random variables (blue-con-
tinuous line). Mean value of the relative error appears with
a thick line. The maximum deviation of the relative error for
all Monte-Carlo runs appears with a thin line.
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Figure 1(b) shows the magnitude of the relative error
when 20 consecutive samples of output data are missing.
We observe that both methods provide good estimates.
However, the estimates obtained with the proposed ap-
proach have a smaller relative error.

Figure 1(c) shows the magnitude of the relative error
when 200 consecutive output samples are missing. We
see that the proposed approach still provides good esti-
mates. However, the “current approach” is not able to
estimate the system due to the large amount of missing
data.

5.2 Example: Impact of incomplete data for the identi-
fication of systems subject to under-modelling

Consider a first order discrete-time linear system rep-
resented in state-space form as in (18)-(20). The input
signal is chosen as zero mean Gaussian white noise with
variance σ2

u = 4. The corresponding input-output rep-
resentation of the system is given by

G0(zk) = C(zkI −A)−1B +D =
0.25

zk − 0.75

N = 1024 data points are utilised to identify the system
in the case where there is no missing data.

We run 100 Monte-Carlo simulations for different noise
realisations and we estimate the state space matrices
corresponding to a first order system.

We impose the constraint D = 0 to identify the system
for all cases and obtain the estimates by using the pro-
posed algorithm. The purpose of this numerical example
is to illustrate the flexibility of the dual time-frequency
domain approach. The computation of the expected val-
ues in (26)-(27) might increase the computational load
of the complete algorithm. However, the complexity of
the key steps of the numerical procedure is similar to the
standard EM algorithm applied to state-space systems
using time domain data. It is beyond of the scope of the
current paper to delve further into numerically efficient
algorithms.

We test our approach with two different sets of data:

Set (i): No under-modelling: Here we generate the data
using a first order model with A = 0.75, B = 0.5,
C = 0.5, D = 0, Q = 0.01, R = 0.01 and S = 0.

Set (ii): With under-modelling: Here, the data is gen-
erated by a second order state-space model with the
following matrices:

A =

[
0.5 0.4472

0 0.75

]
B =

[
0

0.5

]
(31)

C =
[
0.1847 0.413

]
D = 0

Q = 0.01I2 R = 0.01 S = 0 (32)

This model, compared to the model for data set (i),
includes a fast pole located at z = 0.5 which has
an effect for frequencies above 0.7 [rad/s], approxi-
mately.

We consider three different cases for state-space
model estimation:

(i) Full data: In this case we perform estimation with
the full set of data. Notice that this can be per-
formed either in frequency or time domain, leading
to the same system estimate.

(ii) Missing data in the time domain: In this case,
the missing data mechanism st is given by the model
(13)-(14) with ς = 0.7, and δ = 0.7. We use the
same realisation for the missing data mechanism st,
corresponding to 557 missing samples, for all the
Monte-Carlo simulations.

(iii) Robust identification with missing data: In
this case, we consider the missing time domain
data described in (ii) and, additionally, we restrict
the frequency domain estimation bandwidth to the
range from 0 to π/5[rad/s] ≈ 0.62[rad/s], i.e., be-
low the frequencies where the unmodeled fast pole
in (31)-(32) has an effect.

In summary, six different situations are considered as
shown in Figure 2. This figure shows the mean ± one
standard deviation of the relative error (30) over all
Monte-Carlo simulations (with respect to the nominal
first order model). The plots on the left hand side (i.e,
Figures 2(a), 2(c), and 2(e)) correspond to the first set
of data, i.e., when there is no under-modelling in the es-
timation process. The plots on the right hand side of the
figure (i.e., Figures 2(b), 2(d), and 2(f)) correspond to
the second set of data generated by the system (31)-(32)
and we fit a first order model. Notice that the vertical
scale between left and right plots is different since (as
one would expect) when under-modelling is introduced,
there is an increment (of one order of magnitude) in the
relative error.

Figure 2(a), shows the magnitude of the relative error,
when the full data is available and the system and model
have the same structure (first order). We use the data
corresponding to all the frequencies in the estimation
which is equivalent to the usual case of time domain iden-
tification. We refer to this simulation as Reference Case.
On the other hand, Figure 2(b) shows the relative er-
ror when under-modelling is present at high frequencies
(i.e. the data is generated by the second order model).
This leads to an increase in the relative error compared
to the reference case, in particular, at high frequencies
due to the unmodeled fast pole.

Figures 2(c) and 2(d) show the results when missing time
domain data is considered. Figure 2(c) shows a slight in-
crease in the relative error compared to the Reference
case. On the other hand, Figure 2(d) shows the relative
error when under-modelling is present at high frequen-
cies. In this case, the missing data helps to obtain a bet-

10



10−2 10−1 1000

0.005

0.01

0.015

0.02

0.025

Frequency [rad/s]

 

 
 Proposed approach

(a) Reference case, Full Data, Correct Model

10−2 10−1 1000

0.05

0.1

Frequency [rad/s]

 

 
 Proposed approach

(b) Full Data, Under-Modelling

10−2 10−1 1000

0.005

0.01

0.015

0.02

0.025

Frequency [rad/s]

 

 
 Proposed approach

(c) Missing data, Correct Model

10−2 10−1 1000

0.05

0.1

Frequency [rad/s]

 

 
 Proposed approach

(d) Missing data, Under-Modelling

10−2 10−1 1000

0.005

0.01

0.015

0.02

0.025

Frequency [rad/s]

 

 
 Proposed approach

(e) Robust identification, Missing Data, Correct
Model

10−2 10−1 1000

0.05

0.1

Frequency [rad/s]

 

 
 Proposed approach

(f) Robust identification, Missing Data, Under-
Modelling

Fig. 2. Relative error magnitude |(G0 − Ĝ)/G0| for all simulations corresponding to the example presented in Section 5.
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ter result than those obtained when there is no missing
data (see Figure 2(b)) but the system is identified using
the structure corresponding to the nominal model (first
order).

Finally, Figures 2(e) and 2(f) shows the relative error
for the case when there is missing data, and we use fre-
quency domain data in a reduced frequency range. Fig-
ure 2(e) shows that the relative error is greater than that
obtained corresponding to the missing data case in Fig-
ure 2(c), specially at high frequencies. In this case, the
variance of the estimates increases since only a part of
the data is utilised for identification, but in fact, there
is no under-modelling. On the other hand, Figure 2(f)
shows the relative error when there is time domain miss-
ing data, we use frequency domain data in a reduced
frequency range, and the system is identified using the
structure corresponding to the nominal model (first or-
der), but the data is generated by the second order sys-
tem. Note, that the relative error at all frequencies is
smaller than the relative errors obtained in all other cases
where under-modelling is present (see Figures 2(b) and
2(d)). This confirms that using incomplete data (dis-
carding or missing data) for identification may be bene-
ficial in the presence of modelling errors.

6 Conclusions

In this paper, we have considered the problem of ob-
taining an ML estimate for the parameters of a linear
discrete-time-invariant stochastic system. We have pre-
sented new ideas to perform Robust System Identifica-
tion in the presence of missing-data in the time domain.
These ideas have led to a new procedure which we refer
to as Dual Time-Frequency Domain Identification.

We have also presented an estimation procedure based
on the EM algorithm to identify a system represented in
state-space form. We developed a Newton-like algorithm
that calculates the derivatives of the likelihood function
using the quantities obtained in the EM algorithm. The
flexibility of the approach developed in this paper has
been illustrated by several numerical examples.

It is important to note that the results show that, when
the system structure is known (no under-modelling), us-
ing incomplete data for identification (missing data in
time domain or data selection frequency domain) leads
to deterioration of the estimation accuracy. On the other
hand, when under-modelling is present (a very common
case), using incomplete data for identification may im-
prove the quality of the estimated models.
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[2] J. C. Agüero, J. I. Yuz, and G. C. Goodwin. Frequency
domain identification of MIMO state space models using the
EM algorithm. In European Control Conference ECC, 2007.
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7 Appendix

Lemma 13 Let A, B, C, D, and X be matrices of ap-
propriate dimensions, then

(1) vec {ABC} = [CT ⊗A]vec {B}.
(2) [A⊗B]H = AH ⊗BH .
(3) [A⊗B]−1 = A−1 ⊗B−1.
(4) tr {ABCD} = vec {D}T [A⊗ CT ]vec

{
BT
}

.
(5) tr {ABC} = tr {CAB} = tr {BCA}.
(6) ∂tr{AXB}

∂X = ATBT .

(7)
∂tr{AXBXT}

∂X = ATXBT +AXB.
(8) ∂ log det{X}

∂X = X−T .

(9)
∂vec{X−1}
∂(vec{X})T = −[X−T ⊗X−1].

PROOF. See e.g. [45, Chapters 4, 11 and 17]. 222

Lemma 14 Let the cost function J(X,Y ) be

J(X,Y ) = α log det {X}+ βtr {XZ(Y )}
Z(Y ) = [Ξ−ΨY T − YΨT + Y∆Y T ]

13



where X = XT ∈ Rm×m, and Y ∈ Rm×n are matrices,
α ∈ R and β ∈ R are constants, Ξ = ΞT , ∆ = ∆T ,
and Ψ are constant matrices of appropriate dimension.
Then, the partial derivatives of J(X,Y ) with respect to
the matrices X and Y are given by:

∂J(X,Y )
∂X

= αX−1 + βZ(Y )

∂J(X,Y )
∂Y

= 2βX[Y∆−Ψ]

PROOF. Directly by using Lemma 13. 222

7.1 Gaussian distributions

A random vector x ∈ Rn×1 is said to be real (non-
singular) Gaussian distributed (denoted x ∼ N (µ,Σ))
if its pdf is given by [45, Chapter 20]:

p(x) = det {2πΣ}−
1
2 exp

{
−1

2
[x− µ]TΣ−1[x− µ]

}
where µ and Σ (positive definite) are the mean and co-
variance of x. In addition, if Σ is positive semidefinite
(i.e. singular) the probability distribution still exists but
not the density function. In this case, x ∈ Rn×1 is real
Gaussian distributed if and only if αTx is univariate nor-
mal for all α ∈ Rn. If x = a ∈ R, we define x to be
x ∼ N (a, 0).

Lemma 15 Let
[
XT Y T

]T
be a real Gaussian dis-

tributed random vector with mean
[
µTX µTY

]T
and vari-

ance

[
Σx Σxy
Σyx Σy

]
(possibly singular). Then, X given Y

is a Gaussian distributed random vector with mean and
variance given by:

µX|Y = µx + ΣxyΣ†y(Y − µy)

ΣX|Y = Σx − ΣxyΣ†yΣyx

respectively.

PROOF. See [45, Chapter 20]. 222

Lemma 16 If ~z ∈ Rn is a Gaussian random vector with
mean µ1 and a non-singular covariance matrix Σ1 (i.e.
~z ∼ N (µ1,Σ1)), and ~g = T~z where T ∈ Rm×n is a de-
terministic matrix (m ≤ n), then ~z given ~g is a Gaussian
random vector with mean µ2 and covariance Σ2 given by
~z|~g ∼ N (µ2,Σ2), where

µ2 = µ1 + Σ1T
T (TΣ1T

T )†(~g − Tµ1)
Σ2 = Σ1 − Σ1T

T (TΣ1T
T )†TΣ1

PROOF. Considering that
[
~zT ~gT

]T
=
[
I TT

]T
~z, we

have that
[
~zT ~gT

]T
is a Gaussian random vector with

mean
[
µT1 (Tµ1)T

]T
and variance

[
Σ1 Σ1T

T

TΣ1 TΣ1T
T

]
. The

result then follows using Lemma 15. 222

7.2 Expected Value of a Quadratic term

Lemma 17 Let ζ ∈ Rm and ξ ∈ Rn be random vectors,
and let Θ ∈ Rm×n and P−1 ∈ Rm×m be deterministic
matrices, then

E
{

(ζ −Θξ)TP−1(ζ −Θξ)
}

= (ζ̂ −Θξ̂)TP−1(ζ̂ −Θξ̂)

+tr
{
P−1

[
Σζ −ΘΣTζξ − ΣζξΘT + ΘΣξΘT

]}
where ξ̂ = E {ξ}, ζ̂ = E {ζ}, Σζξ = E

{
(ζ − ζ̂)(ξ − ξ̂)T

}
,

Σξ = E
{

(ξ − ξ̂)(ξ − ξ̂)T
}

, Σζ = E
{

(ζ − ζ̂)(ζ − ζ̂)T
}

.

PROOF. The result is obtained by expanding the term
on the left hand side and using the properties of the trace
and expected value operators. 222

Lemma 18 Let ~z =
[
z1 z2 · · · zn

]T
∈ Rn be a Gaus-

sian random vector with mean µ and covariance Σ (i.e.
~z ∼ N (µ,Σ)), then for nonnegative integers s1 to sn, we
have:

E

{
n∏
i=1

zsii

}
=

s1∑
ν1=0

· · ·
sn∑
νn=0

bs/2c∑
r=0

(−1)mf(ν1, · · · , νn)

f(ν1, · · · , νn) =

(
s1

ν1

)
· · ·

(
sn

νn

) (hTΣh
2

)
(hTµ)s−2r

r!(s− 2r)!

wherem =
∑n
i=1 νi, zi is the i-th component of the vector

~z, bs/2c denotes the largest integer smaller than or equal

to s/2, s = s1 + · · · sn, h =
[
s1
2 − ν1 · · · sn

2 − νn
]T

, and(
a

b

)
are binomial coefficients.

PROOF. See [31]. 222
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